Mapping the Geographic Variations of the Low Birth Weight cases in South Korea: Bayesian Approaches

Young-hee Roh* · Key-ho Park**

Abstract: This study reviewed and compared methods for mapping aggregated low birth weight (LBW) and geographic variations in LBW in South Korea. Based on this review, we produced LBW maps in South Korea. Standardized mortality/morbidity ratios (SMRs) and crude mortality rates have been widely used for many years in epidemiological research. However, SMR-based maps are likely to be affected by sample size of unit area. Therefore, this study adopted a model-based approach using Bayesian estimates to reduce noisy variability in the SMR. By using a Bayesian model, we can calculate a statistically reliable RR values. We used the full Bayes estimator, as well as empirical Bayes estimators. As a result, variations in the two Bayes models were similar. The SMR-based statistics had the largest variation. The result maps can be used to identify regions with a high risk of LBW in South Korea.

Key Words: spatial epidemiology, spatial statistics, bayesian analysis, disease mapping, low birth weight (LBW), standardized mortality/morbidity ratio (SMR)

요약: 본 연구에서는 우리나라에서 발생한 저체중아 출생 집계 자료를 공간적으로 지도화하기 위한 기법들을 검토·비교하고, 이를 기반으로 우리나라의 LBW 지도를 작성하였다. 표준화사망률이나 조사망률 등의 역학 분야에서 지속적으로 광범위하게 사용되고 있는 지표이다. 그러나 이러한 표준화사망률은 집계 단위의 샘플 수에 영향을 많이 받는다는 단점을 가지고 있다. 이에, 본 연구에서는 베이지언 기법을 활용하여 샘플 수에 따른 통계적 변동성을 감소시키고자 하였다. 이를 위해 경험적 베이지언 기법과 풀 베이지언 기법을 모두 활용하였고, 결과적으로 유사한 통계량을 산출한 것을 확인할 수 있었다. 반면, SMR 기반의 통계량은 높은 분산을 가지고 있음을 확인하였다. 연구의 결과에 따른 통계 지도는 우리나라 저체중아 출생의 높은 위험도를 가진 지역들을 파악할 수 있도록 한다.

주요어: 공간역학, 공간통계, 베이지언 분석, 질병 지도화, 저체중아, 표준화(유병률)사망률

* Invited Research Fellow, Division of Natural Resources Conservation, Korea Environment Institute, yhroh@kei.re.kr
** Professor, Department of Geography, Seoul National University, khp@snu.ac.kr
1. Introduction

According to data from the Ministry of Health and Welfare in South Korea (2012), the proportion of low birth weight (LBW) and multiple births are increasing over time. Between 2004 and 2010, LBW rates increased 25% from 4.1% to 5%. Ylppö (1919) originally defined LBW as infants weighing less than 2,500 grams. In 1950, the World Health Organization (WHO) adopted a figure of less than 2,500 grams as a universal definition of LBW (WHO, 1950). LBW is a well-known risk factor for increased infant morbidity and mortality. LBW has become the second leading cause of death among infants, after premature birth (Valero De Bernabé et al., 2004). By school age, children with a LBW are more likely than those with a normal birth weight to have mild learning disabilities, attention disorders, developmental impairments, and breathing problems, such as asthma (Shiono and Behrman, 1995).

Many studies have analyzed the potential risk factors for LBW including socio-economics, smoking, maternal age, and educational level (Chomitz et al., 1995; Rush and Cassano, 1983; Shiono and Behrman, 1995; Valero De Bernabé, 2004). Maternal age is considered as an important determinant of birth outcome and is thought to represent a mother’s biological or psychosocial preparedness for childbearing (Geronimus, 1996). Mothers over 35 years old have a higher chance to get a LBW infant when it compares to mothers aged 20 to 29 years old (Berkowitz et al., 1990). According to the Bureau of Statistics in South Korea (2015), the average age for a person to marry has been increased in recent years. The age for a man’s marriage was 32.4 years in 2014, up from 29.3 in 2000. In addition, the age for a woman’s marriage was 29.8 years in 2010, up from 26.5 in 2000. Reasons for delayed marriage include trends for increasing number of women with active participation in economic and social fields, high educational level of women, and changing social attitudes to marriage. Under the current circumstances, the average maternal age has also been increased. According to Song and Choi (1999), the average maternal ages in South Korea were 27.9 and 30.8 in 1995, 2008, respectively. They also reported that the proportion of advanced maternal age women in South Korea increased about three times between 1995 and 2008 (4.7% to 14.3%).

The research on LBW in South Korea has been predominantly focused on causes of LBW and developmental problems associated with LBW rather than disease mapping. Maps can depict the incidence and relative risk (RR) rates of LBW with visualization techniques. Disease mapping can also be utilized to assess our needs for health alerts or to formulate hypotheses and models involving potential covariates. Using a series of statistical choropleth maps, we examined the geographical patterns of LBW in South Korea. When calculating the RR for the area-specific aggregated data, we have to pay attention to the variance of RR according to the sample size. SMR is calculated by the ratio of the observed value divided by the expected value. Therefore, if the number of sample is small, SMR statistics have large variance. To compensate for this point, we calculate statistically reliable RRs by utilizing the Bayesian techniques. The study that utilizes Bayesian techniques in epidemiological field can be found in the Roh and Park (2014).

In Section 2, we present a spatio-temporal overview and descriptive statistics of birth counts. Then, we provide a brief review of the statistical methods used to estimate epidemiological rate values, such as RR rates. Bayesian model-based estimates are discussed in detail. In the next section, we calculated statistically reliable risks using Bayesian model-based estimates such as Poisson-Gamma and full Bayes model. The results of calculation were used to produce statistically reliable risk maps. In addition, we made the difference maps between SMR and Bayesian model-based methods.
Mapping the Geographic Variations of the Low Birth Weight cases in South Korea: Bayesian Approaches

2. Materials and Methods

1) Materials

Vital statistics on births were obtained from the birth records of the National Statistical Office, South Korea. Each record contains information on infants, such as date of birth, location, weight, sex, and data on mothers including education, job, and age. The temporal range of this study encompassed 3 years from the beginning of January 2008 to the end of December 2010. LBW datasets were spatially aggregated according to geographical units. South Korea consisted of 249 Si-Gun-Gu levels of administrative districts in 2009. The average area of these districts is about 402 km², but each area of district has a great difference. For example, Jung-Gu within the Busan is the smallest of the districts (3 km²), and Hongcheon-gun within the Gangwon-do is the largest (1,817 km²).

Utilizing a variety of area information, we can create a cartogram. Cartogram is one of the effective mapping techniques to present statistics with distortion of area information of each region. By taking advantage of the cartogram, we can easily compare the statistics of each region with amount of distortion. By doing so, we can detect the regions where have high risk values. As shown in cartogram in Figure 1, birth counts show a great range of variability throughout the areas. We made maps of LBWs in 2008 (panel (a)) and cartogram of newborn babies with the same coloring scheme in (a) (panel (b)). The legends in (a) and (b) are the same. As shown in the cartogram (b), birth counts in South Korea were concentrated in metropolitan areas and major cities include Gwangju, Busan, and Daegu. The birth counts, LBW cases, crude rates, and SMR of each administrative area are summarized in Table 1. LBWs seemed to increase slightly during the three years. The crude birth rate indicates the number of live births per 1,000 populations per year. Based on crude rates, 50 newborn babies were classified as LBW on average (approximately 5%). SMRs are commonly computed in the field of spatial epidemiology. The SMR is a ratio greater than 1.0 suggests an excess risk. SMR had a range of values from 0.11 to 2.13 in 2009.

Figure 2 represents histograms and density plots of the
birth counts in 2008, 2009, 2010, and 3 years data. In each plot, x axis represents the number of newborn baby and y axis represents the density of newborn baby. As seen in the graph, the distribution of the number of newborn baby does not follow a normal distribution. There are many areas with small number of newborn baby.

![Figure 2](image-url)

Figure 2. Birth counts in South Korea (a) counts of 3 year aggregates, (b) 2008, (c) 2009, (d) 2010. The darkest bar represents 1st quartile range and the dotted line represents quintiles, the dashed line represents mean, and the curve represents the density.

Table 1. Descriptive statistics of birth count

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Birth counts</th>
<th>LBW cases</th>
<th>Crude rate*</th>
<th>SMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimum</td>
<td>76</td>
<td>63</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>median</td>
<td>1592</td>
<td>1453</td>
<td>1632</td>
<td>73</td>
</tr>
<tr>
<td>mean</td>
<td>1871</td>
<td>1787</td>
<td>1888</td>
<td>91</td>
</tr>
<tr>
<td>maximum</td>
<td>6610</td>
<td>7542</td>
<td>8207</td>
<td>301</td>
</tr>
</tbody>
</table>

* Crude rate is per 1,000 babies
For these reasons, we have to use the statistically reliable model, such as Bayesian model-based estimates to calculate the reliable relative risk.

2) Adjusting and transforming prevalence data

Observing the number of cases alone does not provide any information on the disease risk of a population. Observed values must be compared to expected values. The SMR is a common way to measure relative risks (RR). A RR over 1 suggests an increased risk of that outcome in the exposed group. The SMR can be a useful approximation of RR when the excess in mortality is consistent across all age groups (Symons and Taulbee, 1980). The SMR and its statistical significance are usually estimated and mapped for each region (Costello et al., 1974; Elsen et al., 1992; Meliker et al., 2007). However, estimates of SMRs often show a large variability. Small population areas tend to present extreme RR estimates, and it will stand out on the map (Bernardinelli and Montomoli, 1992). Incidence rates often suffer from the ‘Small Number Problem.’ The variance of rate depends on the size of the denominator when the nominator is rare events. In the Small Number Problems, if the denominator is small, variance of rate will be large. If the denominator is large, variance of rate will be small. The Small Number Problem occur various geographic areas where the population is sparse or the numerator is a rare event. If this occurs, small random fluctuations of variable may cause large fluctuations in the resulting percentage, ratio, or rate (Kennedy, 1989).

To develop statistically robust model-based estimations, researchers have been utilized information from global mean and Bayes approaches. Clayton and Kaldor (1987) proposed a model-based Bayesian approach. According to this study, unknown RRs are modeled collectively as a spatial stochastic process. Since then, a number of related studies have been published (Marshall, 1991; Mollie and Richardson, 1991; Richardson et al., 2004). According to Bayesian model-based approaches, each area has an estimated RR, which is a compromise between its SMR and inferences from information obtained from all of the areas combined. Such approaches reduce risk estimates and result in stabilized maps with better epidemiological interpretation (Bernardinelli and Montomoli, 1992). One way to account for spatial associations is to define a neighborhood in i-th area and to use the neighborhood to set prior parameters for θ_i; θ_i is the RR risk in i-th region. Then, θ_i is estimated by shrinking the disease rates toward the neighborhood mean, instead of a global mean (Marshall, 1991). The results of local shrinkage are produced by local estimators in each area.

(1) SMR

Due to the fact that it has simple computational procedure, the SMR is the most widely used standardization statistic in risk ratio assessments in the field of public health. The SMR can be interpreted as a ratio of the observed to expected numbers of cases. The expected number of case is determined by the standard population. The average risk rate of a national aggregate population is often employed as a standard. The SMR is a maximum likelihood estimate of the RR under a Poisson model of the observed number of disease occurrences. Within a map of n regions, O_i denotes the observed case in i-th region, E_i is the expected count in i-th region, and θ_i is the RR risk in i-th region. We assume that the expected counts are known constants.

$$O_i \sim \text{Poisson}(E_i \theta_i)$$

$$\hat{\theta}_i \equiv \text{SMR}_i = O_i / E_i$$

The observed count in the i-th region is assumed to be a Poisson distribution, with mean $E_i \theta_i$, and the likelihood $L(\theta)$ and log-likelihood $l(\theta)$ of O_i is given by:

$$L(\theta) = \prod_{i} \frac{\exp(-E_i \theta_i)}{O_i!} (E_i \theta_i)^{O_i} = \prod_{i} \text{Poisson}(O_i; E_i \theta_i)$$
Bayesian methods

Empirical Bayes statistics are calculated using penalized log-likelihood maximization. Empirical Bayes information is derived from a model of a reference population. The full Bayesian method utilizes simulations of the joint posterior distribution. One of the strengths of this approach is that it allows for precise assessments of uncertainty. Instead of a point estimate of the expected mean and its variance, it generates a distribution of likely values using a prior distribution. This enables variance to be calculated more accurately (Persaud et al., 2010).

For example, in the following basic framework for a Bayesian analysis (Marshall, 1991), suppose that \(\theta = (\theta_1, ..., \theta_n) \) are the risks to be estimated at N areas and \(y = (y_1, ..., y_N) \) are the numbers of diseases in populations of size \(n_1, ..., n_N \). In the Bayesian approach, inferences about \(\theta \) are based on the posterior distribution \(P(\theta | y) \) of \(\theta \), which is obtained by combining the likelihood with the prior via Bayes’ rule (Carriquiry and Pawlovich, 2004). As the posterior distribution is a product of a likelihood and prior distribution, it describes the behavior of parameters after data have been observed and prior assumptions have been made. The posterior distribution is defined as follows:

\[
P(\theta | y) = \frac{L(y | \theta) g(\theta)}{C}
\]

where \(C = \int_L L(y | \theta) g(\theta) d\theta \)

Where \(g(\theta) \) is the joint distribution of the vector \(\theta \). This distribution \(g(\theta) \) can be specified as a proportionality, \(p(\theta | y) \propto L(y | \theta) g(\theta) \).

Computational problems have hindered the application of the full Bayes approach, but recent developments in Bayesian analysis, mainly in the area of a Monte Carlo technique called the Gibbs sampler, provide a means of overcoming these difficulties. Clayton (1989) and Besag et al. (1991) proposed the application of the Gibbs sampler in disease mapping for the first time. Using the posterior distribution, we can compute points and intervals of estimates, thereby accessing uncertainty in risk maps. Based on a comparison of empirical and full Bayes estimators, Bernardino and Montomoli (1992) concluded that the latter has advantages due to its ability to quantify uncertainty in parameters in the model.

To determine whether different estimators produce different values, we applied empirical and full Bayesian model-based approaches to RRs to calculate reliable risk statistics. To verify the level of stabilization, we depicted risk statistics, and compared variability of SMR and Bayes estimates through the difference maps.

3. Results

1) Geographical visualization of relative risks using an empirical Bayesian model

We calculated model-based SMRs using the Poisson-Gamma prior model of parameters. Figure 3 and 4 depict the maps produced with the empirical Bayes Poisson-Gamma model. For comparison, the SMR maps are included in this figure. In addition, the red circles indicate the high RR regions. We assume that the RRs \{\theta_i\} are iid (independent and identically distributed) and they follow a gamma distribution with a scale parameter \(\alpha \) and shape parameter \(\nu \). Conditional on \(\theta_i \), the observed deaths \(O_i \) are Poisson variates with expectation \(\theta_iE_i \) (Clayton and Kaldor, 1987). In Bayesian estimation, if there is small variance in the crude rate, then it will remain unchanged relatively. In contrast, if there is a large variance in the estimation of the crude rate, it will show strong shrink-
age toward the overall mean. For this reason, the map with the Poisson-Gamma estimator is shrunk toward the overall mean when it compares to a map of SMR. As shown in Figure 3 and 4, empirical Bayes estimates of RRs show smaller variations than the SMR. Extreme SMR estimates based on small populations have shrunk toward their global mean. However, extreme estimates based on large populations are maintained.

Figure 3. Maps of LBW relative risks ((a) SMR - from the leftmost panel, 3 years aggregates, 2008, 2009, and 2010, (b) Poisson-Gamma estimates - 3 years aggregates, 2008, 2009, and 2010)

Figure 4. Maps of LBW relative risks - Enlarged map of the metropolitan area ((a) SMR - from the leftmost panel, 3 years aggregates, 2008, 2009, and 2010, (b) Poisson-Gamma estimates - 3 years aggregates, 2008, 2009, and 2010)
In 2008, the SMR values were high in Uiseong-gun, Seongju-gun, Yecheon-gun, Geo chang-gun, and Cheonggyang-gun. In the empirical Bayes map, they were high in Dongdaemun-gu, Gwangju-si, Jung-gu (Ulsan), Andong, Yangju-si regions. In 2009, SMR values were high in Cheongdo-gun, Hapcheon-gun, Yeongyang-gun, Ulleung-gun, Boeun-gun, Chunc heon-si, Seongnam-si Sujeong-gu, Seongnam-si Jungwon-gu, Daedeok-gu, and Icheon-si in the empirical Bayes map. In 2010, they were high in Namhae-gun, Jung-gu (Busan), Ulleung-gun, Hwacheon-gun, Goseong-gun regions. However, Bupyeong-gu, Paju-si, Nam-gu (Incheon), Jung-gu (Ulsan), Ulju-gun regions had high SMR values in the stabilized map. In the map with 3-year aggregated data, Ulleung-gun, Hapcheon-gun, Jung-gu (Busan), Uiseong-gun, Geo chang-gun regions had high SMR values. However, in the empirical Bayes map, Jung-gu (Ulsan), Seo-gu (Daegu), Dongducheon-si, Nam-gu (Incheon), Gwangju-si regions had high SMR values.

2) Geographical visualization of the relative risks using full Bayesian modeling

The full Bayesian method uses a stochastic simulation technique called the Gibbs sampler, and the value of posterior distributions is obtained from the Markov chain Monte Carlo technique. We performed Gibbs sampling with a burn-in of 10,000 iterations, followed by 10,000 further cycles. We used 10,000 simulations of Markov chains after the 10,000 burn-in period to calculate the mean and median of the parameters. Figure 5 compares the various estimates obtained with the different estimators in 2008. The Poisson-Gamma model and full Bayesian technique produced very similar estimates in all the regions. Some extreme RRs, which suffer from small at-risk population, were effectively attenuated to the prior global mean.

3) Comparison of the results

Table 2 and Figure 6 depict the quintile differences between the SMR and the statistics of the Poisson-Gamma
model. After calculating the SMRs and the statistics of Poisson-Gamma model, the regions were assigned to specific quintile classes according to their RRs. We calculated the differences in the quintile classes between SMR and the statistics of Poisson-Gamma model. As in the research of Pickle and White (1995), we compared and depicted the changes of the quintile classes between the methods to see the difference clearly. If the difference value is positive, it means that the value of SMR quintile class becomes smaller. It is caused by movement from a large quintile class to a small quintile class. In contrast, if the difference value is negative, it means that it moves toward a larger quintile class from a smaller quintile class. If the difference value is 0, it indicates that there is no movement between classes.

As shown in Table 2, more one-half of the quintile classes are unchanged. In most cases, after stabilization, quintile classes increased or decreased by just one class. In the 3 years aggregated data, the classes changed very little (67.5%) compared to each year’s data. Relatively stable SMR values were calculated by increasing the number of samples through aggregating the 3 years of LBW data. Figure 6 depicts the quintile values and class changes in the 3 years aggregated data (left panels) and each of the data in 2008 (right panels). The cumulative curves of each quintile count are shown in the right lower corner of each panel. By applying the Bayesian method (2a and 2b), we calculated the reliable risk statistics of each region. The ranges of the Bayesian SMR decreased and 2-quintile and 4-quintiles of SMR ranges were distributed around 1 (1.00, 1.01, and 1.03, respectively). In the difference map (3a and 3b), changes in the quintile class of the SMR with the 3 years’ aggregated data were smaller than in the SMR of each year.

Table 3 shows the specific quantities of quintile change and the number of the region. The number of regions of positive and negative changes of quintile class is similar. Whether the region has positive change or negative change of class, in most cases, it moves between 1-quintile and 2-quintiles or it moves between 4-quintiles and 5-quintiles. The regions where class change occurs toward the center have a relatively small birth count. On the other hand, the regions where class changes occur toward the 1 or 5-quintile range have a relatively large number of births.

In the 3 years’ aggregated data, Ongjin-gun, Jangsu-gun, Danyang-gun, Gurye-gun, and Muju-gun, moved from 1-quintile to 2-quintile after stabilization. In contrast, Guro-gu, Gwanak-gu, Yeongdeungpo-gu, Yongsan-gu, and Anseong-si moved from 2-quintile to 1-quintile. Seongdong-gu, Seocho-gu, Gangnam-gu, Seodaemun-gu, and Yeonsu-gu moved from 4-quintiles to 5-quintiles, and Ulleung-gun, Gunwi-gun, Cheongsong-gun, Yeongdeok-gun, and Bonghwa-gun moved from 5-quintiles to 4-quintiles. Yeongyang-gun moved from 5-quintiles to 3-quintiles, showing a 2-quintile change. In 2009, Gokseong-gun and Jangsu-gun showed 2-quintile class changes: 1-quintile to 3-quintiles. In

Table 2. The number of regions that changed their quintile classes

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Years</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difference of SMR and Poisson-Gamma model</td>
<td>3 years</td>
<td>0(0)</td>
<td>41(16.5)</td>
<td>168(67.5)</td>
<td>39(16)</td>
<td>1(0.4)</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>0(0)</td>
<td>53(21.3)</td>
<td>143(57.4)</td>
<td>53(21.3)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>2(0.8)</td>
<td>45(18.1)</td>
<td>153(61.4)</td>
<td>49(19.7)</td>
<td>0(0)</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>2(0.8)</td>
<td>58(23.3)</td>
<td>128(51.4)</td>
<td>61(24.5)</td>
<td>0(0)</td>
</tr>
</tbody>
</table>

The numbers in parentheses refer to percentages (%)
Young-hee Roh · Key-ho Park

2010, Pyeongchang-gun and Ongjin-gun changed from 1-quintile to 3-quintiles. The regions shifted more than 2-quintile classes had a small LBW count or birth count. By acceptance of the global mean, large change of quintile class have occurred in these regions because of the small sample size. In addition, their ranks of the LBW and birth counts placed in the 1st quintile.

Table 4 summarizes the class frequencies of regions. The classes were divided into four with equal intervals of 0.5. If a risk value was greater than 1.5, it was classified as Class 4. Therefore, Class 4 regions can be considered to have a relatively high risk of LBWs. On the other hand, if the RR was smaller than 0.5, the region was classified as Class 1 (i.e., regions with a low relative risk of LBW). Some areas classified according to SMR values fell into Class 1 and 4. However, no regions were allocated to Class 1 or Class 4 when classifying regions with stabilized SMR. The regions assigned to Class 1 or 4 according to SMR had a small population and relatively low number of births. Due to the small number of population, the variability of SMR was relatively large. The stabilized SMR statistics were weighted based on the global mean of the populations, so there are no regions classified as Class 1 or 4.

In 2008, there was a large variation between SMRs and the full Bayes model in Uiseong-gun, Inje-gun, Yangyang-gun, Seongju-gun, and Boeun-gun. In 2009, Cheongdo-gun, Hapcheon-gun, Yanggu-gun, Yeongyang-gun, and Jinan-gun showed large differences between before and after stabilization. In addition, there was a large difference before and after stabilization in Namhae-gun, Ulleung-gun, Jung-gu (Busan), Yeongyang-gun, Yanggu-gun in 2010 and in Ulleung-gun, Yanggu-gun, Hapcheon-gun, Jung-gu (Busan), Jinan-gun in the 3 year aggregated data. In most cases, large difference values between SMR and shrink value are observed in the regions where the population is small (i.e., a low birth rate). In general, the smaller the population, the larger the shrinkage. The comparison shows that the higher RR shrunk much more toward the overall mean in rural than in urban regions.

Table 3. Counts of the areas with increased and decreased quintile classes

<table>
<thead>
<tr>
<th>Quintile Changes (SMR to Poisson-Gamma model)</th>
<th>3 years</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 to 2</td>
<td>13</td>
<td>19</td>
<td>17</td>
<td>22</td>
</tr>
<tr>
<td>2 to 3</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>3 to 4</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>4 to 5</td>
<td>16</td>
<td>20</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>1 to 3</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2 to 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 to 5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Decreased</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 to 4</td>
<td>16</td>
<td>20</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>4 to 3</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>3 to 2</td>
<td>5</td>
<td>9</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>2 to 1</td>
<td>13</td>
<td>19</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td>5 to 3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4 to 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 to 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* Except for no changes
Figure 6. Mapping the differences of quintile classes based on the SMR and Bayes estimates ((a) 3 years aggregated data: (1a) SMR quintile map, (2a) quintile map of Poisson-Gamma model, (3a) Difference map, (b) 2008: (1b) SMR quintile map, (2b) quintile map of Poisson-Gamma model, (3b) Difference map)
4. Discussion

Mapping is an effective way to visualize counts or rates of health data. We can provide easy and interesting health contents when we make a map using the prevalence or mortality data in each unit area. The representation of epidemiological data using maps and subsequent analysis of maps are commonly used in the analysis of health statistics and spatio-temporal patterns. Area-specific estimates of risk can give suggestions on public health resource allocations by estimating the disease burden in specific areas. In addition, as in the John Snow’s cholera maps, creating risk maps can be a clue to solve the hypotheses associated with health.

In this study, we produced prevalence maps of LBW in South Korea for the first time. SMRs are widely used to explain RRs in epidemiological fields. However, epidemiological maps and geographic visualization based on SMRs may give misleading of data due to a small number of cases or small populations in the study areas. Therefore, we used Bayesian models to calculate and depict statistically reliable risk estimates of LBW in South Korea. We used both empirical Bayes and full Bayes approaches for smoothing purposes. In addition, we compared maps of the posterior distribution of prevalence and the SMR.

We used the Poisson-Gamma model and full Bayesian methods. A Bayesian approach is warranted to accommodate the posterior means in epidemiological mapping studies. The use of the Bayesian model provided more reliable estimates of RRs in small areas. To compare the variability and range of the statistics computed by each method, we calculated the difference between SMRs and model-based estimates. We visualized SMRs, model-based estimates, and differences between the two methods. The SMR method was the least efficient estimate of RRs. Bayesian approaches could be used to explore an excessive and low risk area with statistically reliable risk values. In this study, the result statistics and the variance of empirical and full Bayesian analysis were similar. Therefore, when considering the principle of Occam’s Razor, it would be more efficient to utilize the empirical Bayesian analysis.

The significance of this research study is that it highlights the need for disease mapping and the current status of LBW in South Korea. In addition, this research provides statistically reliable risk maps of LBW in South Korea for the first time. LBW maps can be used for detection of the areas that need to support medical assistance.

The limitation of this research is that it focused on creating LBW prevalence maps. Therefore, this research did not include the statistical grouping or clustering of homogeneous high or low risk regions. Future research should be conducted to identify clusters of high- or low-risk regions of LBW prevalence in South Korea.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td>Under 0.5</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Class 2</td>
<td>0.5 - 1</td>
<td>119</td>
<td>113</td>
<td>124</td>
<td>116</td>
<td>127</td>
</tr>
<tr>
<td>Class 3</td>
<td>1 - 1.5</td>
<td>121</td>
<td>136</td>
<td>111</td>
<td>133</td>
<td>117</td>
</tr>
<tr>
<td>Class 4</td>
<td>Over 1.5</td>
<td>5</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
References

Pickle, L.W. and White, A.A., 1995, Effects of the choice of age-adjustment method on maps of death rates, *Sta-

